Rabu, 23 Mei 2018

Tugas 4 Matkom: Penyelesaian Persamaan Non Linear Menggunakan Metode Biseksi

Penyelesaian Persamaan Non Linier Menggunakan
Metode Biseksi

A. Langkah-langkah metode biseksi

   Langkah 1
Pilih a sebagai batas bawah dan b sebagai batas atas untuk taksiran akar  sehingga terjadi perubahan tanda fungsi dalam selang interval. Atau periksa apakah benar bahwa
f(a) . f(b) < 0
Langkah 2
Taksiran nilai akar baru, c diperoleh dari :

c=(a+b)/2
Langkah 3
Menentukan daerah yang berisi akar fungsi:
  1.  Jika z merupakan akar fungsi, maka f(x < z) dan f(x > z) saling berbeda tanda.
  2. f(a)*f(c) negatif, berarti di antara a & c ada akar fungsi.
  3. f(b)*f(c) positif, berarti di antara b & c tidak ada akar fungsi
Langkah 4
Menentukan berhentinya itersi:
Proses pencarian akar fungsi dihentikan setelah keakuratan yang diinginkan dicapai, yang dapat diketahui dari kesalahan relatif semu.


B.  Metode Biseksi dengan Menggunakan MATLAB

Contoh:
Tentukan salah satu akar dari persamaan non linier f(x) = x2 – 2x – 2 dengan menggunakan Metode Biseksi. Jika diketahui nilai awal x=2 dan x=3, toleransi galat relative x (XTOL) = 0,02 serta ketelitian hingga 4 desimal dibelakang koma!



Tugas:
1.     Tentukan salah satu akar dari persamaan non linier f(x) = x3 – 3x2 – 0,5 dengan menggunakan Metode Biseksi. Jika diketahui nilai awal x=0 dan x=3,5 dan toleransi galat relative x (XTOL) = 0,02 serta ketelitian hingga 2 desimal dibelakang koma!


2.  Tentukan salah satu akar dari persamaan non linier f(x) = x3 – 2x – 1 dengan menggunakan Metode Biseksi. Jika diketahui nilai awal x=1,6 dan x=1,8 dan toleransi galat relative x (XTOL) = 0,02 serta ketelitian hingga 2 desimal dibelakang koma!


    

Jumat, 30 Maret 2018

Tugas 3 Matkom : Cara Menghitung Kombinasi dan Deret Fibonacci Menggunakan Matlab

Cara Menghitung Kombinasi Menggunakan Matlab



Hai sobat matematika, kali ini kita akan bahas bagaimana cara menghitung kombinasi menggunakan MATLAB. sebelum itu kita harus tahu dulu rumus dari kombinasi tersebut.


Nah, untuk menghitung kombinasi kita bisa menggunakan ITERASI (pengulangan) dengan mengunakan perintah FOR, dengan algoritma programnya sebagai berikut:
  1. Input nilai n
  2. Input nilai k
  3. Hitung m= n-k
  4. Hitung n!
  5. Hitung m!
  6. Hitung k!
  7. Hitung kombinasi = n/(m*k)

Langkah-langkah untuk menghitung kombinasi sebagai berikut:
  1. Buka software MATLAB pada perangkat sobat.
  2. Klik icon new script pada matlab.
  3. Buatlah script berikut:
          n=input('n =  ');
          k=input('k =  ');
          m=n-k;
          for i=n-1:-1:1
               n=n*i;
          end
          %Hitung faktorial m=(n-k)!
          for i= m-1:-1:1
              m=m*i;
          end
          for i=k-1:-1:1
               k=k*i;
          end
          kombinasi=n/(m*k);
          disp(['kombinasi dari n,k adalah ' num2str(kombinasi)])


      4. Kemudian Save As → data C: → user → nama PC sobat → klik icon Run pada matlab.
        5. Masukan nilai n dan k sesuai keinginan sobat, misal contoh n=4 dan k=2 maka hasilnya akan
            terlihat seperti gambar berikut.


Rabu, 07 Maret 2018

Tugas 2 Matkom: Membuat Grafik Dua Dimensi dengan Matlab

Membuat Grafik Fungsi Trigonometri Dua Dimensi dengan Matlab


Hai sobat matematika, kali ini kita akan membuat contoh grafik fungsi trigonometri menggunakan MATLAB. Langkah-langkahnya sebagai berikut:

1. Buka software MATLAB pada perangkat sobat.
2. Ketikan sintaks dibawah ini pada Command Window.

    >> x=[0:0.01:10];
    >> y1=sin(x);
    >> y2=2*sin(x);
    >> y3=1/2*sin(x);
    >> plot(x,y1);
    >> hold on
    >> plot(x,y2);
    >> hold on
    >> plot(x,y3);
    >> title('Contoh Grafik Fungsi Trigonometri')

   Seperti gambar berikut:


3. selanjutnya hasil grafik yang diperoleh seperti gambar berikut;


4. Untuk membuat grafik lainnya silahkan ubah y1, y2, dan y3 sesuai keinginan sobat.

Selamat mencoba ...😊
Jika ada pertanyaan silakan komen dibawah ya.


    for more information : http://jefrimarzal.staff.unja.ac.id


Kamis, 22 Februari 2018

Tugas Matkom: Perkalian Dua Matriks Menggunakan Matlab

PERKALIAN DUA MATRIKS

Misalkan diketahui dua buah matriks yaitu A dan B. Dua matriks dapat dikalikan jika banyak kolom pada matriks A sama dengan banyak baris pada matriks B, sedangkan hasil perkalian matriksnya akan memiliki baris yang sama banyak dengan baris  matriks A dan memiliki kolom yang sama banyak dengan kolom matriks B, maka dapat dinotasikan :


Metode perkalian dua matriks adalah memasangkan baris pada pertama dengan kolom pada matriks kedua. Perhatikan metode perkalian matriks berikut:



Sifat-Sifat Operasi Perkalian Matriks

Operasi perkalian matriks memenuhi sifat assosiatif dan distributif, tetapi tidak memenuhi sifat komutatif.

















Cara Menggunakan MATLAB Dalam Menentukan Hasil Perkalian Dua Matriks

Soal :





Langkah-langkah :

  1. Buka terlebih dahulu software MATLAB kemudian tunggu sampai ready
  2. Buatlah matriks P dan Q seperti pada gambar dibawah ini. 
  3. Kemudian tentukan P×Q  dengan membuat variabel baru, misalkan variabel R, kemudian untuk operasi perkalian yang digunakan operasi “ * “ (abaikan tanda “), seperti gambar.
  4.  Maka diperoleh hasil R= P×Q
  5. Begitu juga untuk ordo 4×4 dan seterusnya, lakukan hal yang sama.

Mudah kan...😊

for more information : http://jefrimarzal.staff.unja.ac.id